找回密码
 立即注册
此处承接前面未深入分析的页面释放部分,主要详细分析伙伴管理算法中页面释放的实现。页面释放的函数入口是__free_page(),其实则是一个宏定义。
具体实现:
  1. 【file:/include/linux/gfp.h】#define __free_page(page) __free_pages((page), 0)
复制代码
而__free_pages()的实现:
  1. 【file:/mm/page_alloc.c】void __free_pages(struct page *page, unsigned int order){    if (put_page_testzero(page)) {        if (order == 0)            free_hot_cold_page(page, 0);        else            __free_pages_ok(page, order);    }}
复制代码
其中put_page_testzero()是对page结构的_count引用计数做原子减及测试,用于检查内存页面是否仍被使用,如果不再使用,则进行释放。其中order表示页面数量,如果释放的是单页,则会调用free_hot_cold_page()将页面释放至per-cpu page缓存中,而不是伙伴管理算法;真正的释放至伙伴管理算法的是__free_pages_ok(),同时也是用于多个页面释放的情况。
此处接着则由free_hot_cold_page()开始分析:
  1. 【file:/mm/page_alloc.c】/* * Free a 0-order page * cold == 1 ? free a cold page : free a hot page */void free_hot_cold_page(struct page *page, int cold){    struct zone *zone = page_zone(page);    struct per_cpu_pages *pcp;    unsigned long flags;    int migratetype;     if (!free_pages_prepare(page, 0))        return;     migratetype = get_pageblock_migratetype(page);    set_freepage_migratetype(page, migratetype);    local_irq_save(flags);    __count_vm_event(PGFREE);     /*     * We only track unmovable, reclaimable and movable on pcp lists.     * Free ISOLATE pages back to the allocator because they are being     * offlined but treat RESERVE as movable pages so we can get those     * areas back if necessary. Otherwise, we may have to free     * excessively into the page allocator     */    if (migratetype >= MIGRATE_PCPTYPES) {        if (unlikely(is_migrate_isolate(migratetype))) {            free_one_page(zone, page, 0, migratetype);            goto out;        }        migratetype = MIGRATE_MOVABLE;    }     pcp = &this_cpu_ptr(zone->pageset)->pcp;    if (cold)        list_add_tail(&page->lru, &pcp->lists[migratetype]);    else        list_add(&page->lru, &pcp->lists[migratetype]);    pcp->count++;    if (pcp->count >= pcp->high) {        unsigned long batch = ACCESS_ONCE(pcp->batch);        free_pcppages_bulk(zone, batch, pcp);        pcp->count -= batch;    } out:    local_irq_restore(flags);}
复制代码
先看一下free_pages_prepare()的实现:
  1. 【file:/mm/page_alloc.c】static bool free_pages_prepare(struct page *page, unsigned int order){    int i;    int bad = 0;     trace_mm_page_free(page, order);    kmemcheck_free_shadow(page, order);     if (PageAnon(page))        page->mapping = NULL;    for (i = 0; i < (1 pcp;    if (cold)        list_add_tail(&page->lru, &pcp->lists[migratetype]);    else        list_add(&page->lru, &pcp->lists[migratetype]);    pcp->count++;    if (pcp->count >= pcp->high) {        unsigned long batch = ACCESS_ONCE(pcp->batch);        free_pcppages_bulk(zone, batch, pcp);        pcp->count -= batch;    }
复制代码
其中pcp表示内存管理区的每CPU管理结构,cold表示冷热页面,如果是冷页就将其挂接到对应迁移类型的链表尾,而若是热页则挂接到对应迁移类型的链表头。其中if (pcp->count >= pcp->high)判断值得注意,其用于如果释放的页面超过了每CPU缓存的最大页面数时,则将其批量释放至伙伴管理算法中,其中批量数为pcp->batch。
具体分析一下释放至伙伴管理算法的实现free_pcppages_bulk():
  1. 【file:/mm/page_alloc.c】/* * Frees a number of pages from the PCP lists * Assumes all pages on list are in same zone, and of same order. * count is the number of pages to free. * * If the zone was previously in an "all pages pinned" state then look to * see if this freeing clears that state. * * And clear the zone&#39;s pages_scanned counter, to hold off the "all pages are * pinned" detection logic. */static void free_pcppages_bulk(struct zone *zone, int count,                    struct per_cpu_pages *pcp){    int migratetype = 0;    int batch_free = 0;    int to_free = count;     spin_lock(&zone->lock);    zone->pages_scanned = 0;     while (to_free) {        struct page *page;        struct list_head *list;         /*         * Remove pages from lists in a round-robin fashion. A         * batch_free count is maintained that is incremented when an         * empty list is encountered. This is so more pages are freed         * off fuller lists instead of spinning excessively around empty         * lists         */        do {            batch_free++;            if (++migratetype == MIGRATE_PCPTYPES)                migratetype = 0;            list = &pcp->lists[migratetype];        } while (list_empty(list));         /* This is the only non-empty list. Free them all. */        if (batch_free == MIGRATE_PCPTYPES)            batch_free = to_free;         do {            int mt; /* migratetype of the to-be-freed page */             page = list_entry(list->prev, struct page, lru);            /* must delete as __free_one_page list manipulates */            list_del(&page->lru);            mt = get_freepage_migratetype(page);            /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */            __free_one_page(page, zone, 0, mt);            trace_mm_page_pcpu_drain(page, 0, mt);            if (likely(!is_migrate_isolate_page(page))) {                __mod_zone_page_state(zone, NR_FREE_PAGES, 1);                if (is_migrate_cma(mt))                    __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);            }        } while (--to_free && --batch_free && !list_empty(list));    }    spin_unlock(&zone->lock);}
复制代码
里面while大循环用于计数释放指定批量数的页面。其中释放方式是先自MIGRATE_UNMOVABLE迁移类型起(止于MIGRATE_PCPTYPES迁移类型),遍历各个链表统计其链表中页面数:
  1. do {    batch_free++;    if (++migratetype == MIGRATE_PCPTYPES)        migratetype = 0;    list = &pcp->lists[migratetype];} while (list_empty(list));
复制代码
如果只有MIGRATE_PCPTYPES迁移类型的链表为非空链表,则全部页面将从该链表中释放。
后面的do{}while()里面,其先将页面从lru链表中去除,然后获取页面的迁移类型,通过__free_one_page()释放页面,最后使用__mod_zone_page_state()修改管理区的状态值。
着重分析一下__free_one_page()的实现:
  1. 【file:/mm/page_alloc.c】/* * Freeing function for a buddy system allocator. * * The concept of a buddy system is to maintain direct-mapped table * (containing bit values) for memory blocks of various "orders". * The bottom level table contains the map for the smallest allocatable * units of memory (here, pages), and each level above it describes * pairs of units from the levels below, hence, "buddies". * At a high level, all that happens here is marking the table entry * at the bottom level available, and propagating the changes upward * as necessary, plus some accounting needed to play nicely with other * parts of the VM system. * At each level, we keep a list of pages, which are heads of continuous * free pages of length of (1 free_area[order].free_list[migratetype]);            goto out;        }    }     list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);out:    zone->free_area[order].nr_free++;}
复制代码
于while (order < MAX_ORDER-1)前面主要是对释放的页面进行检查校验操作。而while循环内,通过__find_buddy_index()获取与当前释放的页面处于同一阶的伙伴页面索引值,同时藉此索引值计算出伙伴页面地址,并做伙伴页面检查以确定其是否可以合并,若否则退出;接着if (page_is_guard(buddy))用于对页面的debug_flags成员做检查,由于未配置CONFIG_DEBUG_PAGEALLOC,page_is_guard()固定返回false;则剩下的操作主要就是将页面从分配链中摘除,同时将页面合并并将其处于的阶提升一级。
退出while循环后,通过set_page_order()设置页面最终可合并成为的管理阶。最后判断当前合并的页面是否为最大阶,否则将页面放至伙伴管理链表的末尾,避免其过早被分配,得以机会进一步与高阶页面进行合并。末了,将最后的挂入的阶的空闲计数加1。
至此伙伴管理算法的页面释放完毕。
而__free_pages_ok()的页面释放实现调用栈则是:
  1. __free_pages_ok()—>free_one_page()—>__free_one_page()
复制代码
殊途同归,最终还是__free_one_page()来释放,具体的过程就不再仔细分析了。

免责声明:本文内容部分来源于网络,出于网络分享目的,如对您的权益版权有异议我们将予以删除,谢谢合作!
分享至 : QQ空间
收藏

0 个回复

您需要登录后才可以回帖 登录 | 立即注册